If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+80x+1=0
a = 4; b = 80; c = +1;
Δ = b2-4ac
Δ = 802-4·4·1
Δ = 6384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6384}=\sqrt{16*399}=\sqrt{16}*\sqrt{399}=4\sqrt{399}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-4\sqrt{399}}{2*4}=\frac{-80-4\sqrt{399}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+4\sqrt{399}}{2*4}=\frac{-80+4\sqrt{399}}{8} $
| -4+3y=–13 | | 12-d=3 | | x-8/7=11 | | ⅓(4a+1)=½a | | 17-2p=12p+5+2p | | -8+12x=-66 | | 6x2=25 | | -24+6y=12 | | 3-+6=9x-18 | | -y+8=-2 | | 3/4(x-1)=1/4(x=2)+1/2 | | 4/z=12/9 | | 2(y-2)+3(2y+4=32 | | -4+9y=-13 | | 32x+4=4+6x+20=180 | | m2+12m+36=0 | | 5x+10=210 | | (x+2)=153 | | -3x2-19x-6=0 | | 6000×1.2x=48000 | | 3.14+18x=521 | | 1.43p+2.2=4.001 | | 6000×1.2n=48000 | | u/7+65=69 | | z-1/2=41/2 | | 42.50−4.50x=29 | | 0.6(n+25)=10+0.2n | | 6x+2x=8x-14-6 | | -2(x+3)=2(x-1)-5x | | 3y=14.4 | | -4x7=15 | | 1=j/4−3 |